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ABSTRACT 
This paper presents the design and implementation of a cyber 

physical system (CPS) for neural-machine interface (NMI) that 

continuously senses signals from a human neuromuscular control 

system and recognizes the user's intended locomotion modes in 

real-time. The CPS contains two major parts: a microcontroller unit 

(MCU) for sensing and buffering input signals and an FPGA device 

as the computing engine for fast decoding and recognition of neural 

signals. The real-time experiments on a human subject 

demonstrated its real-time, self-contained, and high accuracy in 

identifying three major lower limb movement tasks (level-ground 

walking, stair ascent, and standing), paving the way for truly neural-

controlled prosthetic legs. 

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems]: Real-

time and embedded systems.  

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Neural-machine interface, embedded system, prosthetic leg, field-

programmable gate array (FPGA) 

1. INTRODUCTION 

Neural-machine interface (NMI) is a typical example of 

biomedical cyber physical system (CPS) which utilizes neural 

activities to control machines. The neural signals collected from 

nerves, central neurons, and muscles contain a lot of important 

information that can represent human states such as emotion, 

intention, and motion. In such a CPS, a computer senses bioelectric 

signals from a physical system (i.e. human neural control system), 

interprets these signals, and then controls an external device, such 

as a power-assisted wheelchair [1], a telepresence robot [2], or a 

prosthesis [3-5], which is also a physical system.  
The neural signals captured from muscles are called 

electromyographic (EMG) signals. The EMG signals can be picked 
up with electrodes on the body surface and are effective bioelectric 
signals for expressing movement intent. In recent years, EMG-
based NMI has been widely studied for control of artificial limbs in 
order to improve the quality of life of people with limb loss.  

Researchers have aimed at utilizing neural information to develop 
multifunctional, computerized prosthetic limbs that perform like 
natural-controlled limbs. The NMI needs to interface with multiple 
sensors for collecting neural signals, decipher user intent, and drive 
the prosthetic joints simultaneously. EMG pattern recognition (PR) 
is a sophisticated technique for characterizing EMG signals and 
classifying user’s intended movements. It usually contains a 
training phase for constructing the parameters of a classifier from a 
large amount of EMG signals, and a testing phase for recognizing 
user intent using the trained classifier. While the PR algorithm for 
artificial arm control has been successfully developed and neural-
controlled prosthetic arms have already been clinically tested [4, 6-
7], there has been no EMG-based NMI commercially available for 
control of powered prosthetic legs. Challenges in the management 
of both physical and computational resources have limited the 
success of a CPS for neural control of artificial legs.  

One of the challenges on physical resources is due to the muscle 
loss of leg amputees.  Patients with leg amputations may not have 
enough EMG recording sites available for neuromuscular 
information extraction [8]. The non-stationary of EMG signals 
during dynamic leg movement further increases the difficulty of 
user intent recognition (UIR). To address this challenge, Huang et 
al. proposed a phase-dependent PR strategy for classifying user’s 
locomotion modes [8]. This PR algorithm extracted neural 
information from limited signal sources and showed accurate 
classification (90% or higher accuracy) of seven locomotion modes  
when 7-9 channels of EMG signals were collected from able-bodied 
subjects and leg amputees. The performance of the phase-dependent 
PR strategy was further improved by incorporating EMG signals 
with mechanical signals resulting from forces/moments acting on 
prosthetic legs [9]. The experimental results showed that the 
classification accuracies of the  neuromuscular-mechanical fusion 
based PR algorithm were 2%-27% higher than the accuracies 
derived from the strategies using EMG signals alone, or mechanical 
signals alone [9]. 

The challenges on computational resources include tight 
integration of software and hardware on an embedded computer 
system that is specifically tailored to this environment. It requires 
high speed classifier training, fast response, real-time decision 
making, high reliability, and low power consumption. Embedded 
systems are usually resource constrained and typically have 
processors with slower system clock, limited memory, small or no 
hard drives. To make the idea of neural-controlled artificial leg a 
reality, we need efficiently manage the constrained computational 
resources to meet all the requirements for smooth control and safe 
use of prosthetic legs. Our previous study proposed an NMI 
implemented on a commodity 32-bit microcontroller unit (MCU) 
for recognizing two non-locomotion tasks of sitting and standing in 
real-time [10]. It was reported that there was a noticeable delay of 
400 ms for producing classifying decisions, implying inadequate 
computational power of the MCU for real-time control of artificial 
legs. Furthermore, this NMI implementation realized only the 
testing phase of the PR algorithm on the MCU. The training 
algorithm which involved intensive computations was implemented 
on graphic processing units (GPUs) and showed good speedups 
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over CPU-based implementation [10]. However, currently most of 
the GPU cards only have PCI Express interfaces and are not 
portable. Relative high power consumption further makes it more 
difficult to use GPU as an embedded wearable device.  

To tackle these technical challenges, we present a new design of 
an embedded system that is specifically tailored to the new NMI. A 
unique integration of hardware and software of the embedded 
system is proposed that is suitable to this real-time CPS with 
adequate computational capability, high energy efficiency, 
flexibility, reliability, and robustness. The NMI on an embedded 
platform continuously monitors EMG activities from leg muscles as 
well as mechanical forces/moments acting on prosthetic legs. 
Information fusion technique is then used to decode and decipher 
the collected signals to recognize users' intended locomotion modes 
in real-time. The embedded system contains two major parts: a data 
collection module for sensing and buffering input signals and an 
intelligent processing unit for executing the UIR algorithm. The 
data collection module was implemented on a microcontroller unit 
(MCU) with multiple on-board analog-to-digital converters (ADCs) 
for signal sampling. A reconfigurable FPGA device was designed 
as the main computing engine for this system. There are several 
reasons for choosing FPGAs for the designed NMI. First, the 
parallelism of FPGAs allows for high computational throughput 
even at low clock rates. Secondly, FPGAs are not constrained by a 
specific instruction set, thus are more flexible and more power 
efficient than processors. Furthermore, FPGAs can easily generate 
customized IO interfaces with existing IP cores, and appear to be 
good choices for real-time embedded solutions. In our design, a 
high-level synthesis tool was used to help reducing the 
implementation difficulty of coding with hardware design language 
(HDL). A special parallel processing algorithm for UIR was 
designed, realizing the neuromuscular-mechanical fusion based PR 
algorithm coupled with the real-time controlling algorithm in 
hardware. A serial peripheral interface (SPI) was built between the 
MCU and the FPGA to transfer digitized input data from the MCU 
to the FPGA device. The decision stream of user's intended 
movements can be output to either control a powered prosthetic leg 
or drive a virtual reality (VR) system with the purpose of evaluating 
the NMI. Although our previous research has made the attempt to 
use FPGA in EMG pattern recognition and has shown high 
processing speed in the offline analyses [11], the embedded system 
presented here is the first complete CPS for the NMI that 
implements both training and testing modules on one single chip. 
The New CPS integrates all the necessary interfaces and control 
algorithms for interacting with the physical system in real-time.  

The newly designed NMI was completely built and tested as a 
working prototype. The prototype was then used to carry out real-
time testing experiments on an able-bodied subject for classifying 
three movement tasks (level-ground walking, stair ascent, and 
standing) in real-time. The system performance was evaluated to 
demonstrate the feasibility of a self-contained and high performance 
real-time NMI for artificial legs. Videos of our experiments on the 
human subject can be found at 
http://www.youtube.com/watch?v=KNhihjXProU. 

This paper is organized as follows. Next section presents the 
overall system design. Section 3 describes the detailed 
implementation of the UIR algorithm. The experimental results are 
demonstrated in  Section 4. We conclude our paper in Section 5. 

2. SYSTEM DESIGN 

The architecture of designed CPS is shown in Figure 1. The 
embedded NMI samples input signals from two physical systems--a 
human neuromuscular system and a mechanical prosthetic leg. The 
sampled signals are then processed to decipher user’s intent to 
control the prosthesis. The NMI consists of two modules: a data 

collection module built on an MCU with multiple on-chip ADCs for 
sensing and buffering input signals, and an FPGA device as the 
computing engine for fast data decoding and pattern recognition. A 
serial peripheral interface (SPI) is located between the two devices 
for transferring digitized input data from the MCU to the FPGA 
device. 

1) Input signals: Multi-channel EMG signals are collected from 
multiple surface electrodes mounted on patient's residual muscles. 
Mechanical forces and moments are recorded from a 6 degrees-of-
freedom (DOF) load cell mounted on the prosthetic pylon. The 
EMG signals and the mechanical signals are preprocessed by filters 
and amplifiers and then simultaneously streamed into the NMI. 

2) MCU module: The MCU device does not do any compute-
intensive task. It provides multi-channel on-chip ADCs to sample 
the input signals and convert the analog signals to digital data. The 
digitized data is then stored in the user-defined result queues 
allocated in the RAM buffer. In the system RAM, two equal sized 
result queues are defined. With direct memory access (DMA) 
support, the MCU core can be insulated from the data acquisition 
process. Thus these two result queues forms a circular buffer that 
can continuously receive new data while transmitting old data to the 
FPGA module for further processing. 

3) FPGA module: The FPGA device receives digitized data 
from the MCU module continuously. In order to fully utilize the 
computing capacity of the FPGA system and produce dense 
decisions, the input signals are segmented by overlapped analysis 
windows with a fixed window length and window increment [4]. 
The designed FPGA module contains six components: an SPI 
module that serially receives input signals from the MCU module, a 
user defined module implementing the UIR algorithm, a high-speed 
on-chip memory for fast online pattern recognition, an SDRAM 
controller that interfaces with a large-capacity external SDRAM, 
parallel IOs for outputting UIR decisions, and a soft processor for 
managing hardware components and directing data flows. The 
FPGA module works in two modes: offline training and online 
pattern recognition. Offline training needs to be performed before 
using the artificial leg and also whenever a complete re-training is 
required. During the training procedure, users are instructed to do 
different movement tasks, and a large amount of data is collected by 
the NMI to train the classifier. The external SDRAM is only used in 
the offline training phase to store the training data because FPGAs 
usually have limited on-chip memory. For online pattern 
recognition, the input streams are stored in the on-chip memory for 
fast processing and provided to the classifier for decisions to 
continuously identify the user’s intended movements.  

Figure 1. System architecture of the embedded NMI for artificial legs. 
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3. IMPLEMENTATION OF THE UIR 

ALGORITHM ON FPGA 

3.1 Architecture of the UIR Strategy 

The architecture of the UIR strategy based on neuromuscular-
mechanical information fusion and phase-dependent pattern 
recognition (PR) is shown in Figure 2. It is a self-contained 
architecture that integrates the functions of training and phase-
dependent pattern recognition in one embedded system. For every 
analysis window, features of EMG signals and mechanical signals 
are extracted from each input channel. A feature vector is formed 
and normalized by fusing the features from all the input channels. 
The feature vector is then fed to the classifier for pattern 
recognition. The phase-dependent classifier consists of a gait phase 
detector and multiple classifiers. Each classifier is associated with a 
specific gait phase. During the process of pattern recognition, the 
gait phase for current analysis window is first determined by the 
phase detector, and then the corresponding classifier is adopted to 
do the classification. In this study, four gait phases are defined: 
initial double limb stance (phase 1), single limb stance (phase 2), 
terminal double limb stance (phase 3), and swing (phase 4) [9]. The 
real-time gait phase detection is based on the measurements of the 
vertical ground reaction force (GRF) sampled from the 6-DOF load 
cell. 

In the real-time embedded system design, to ensure a smooth 
control of artificial legs, precise timing control is necessary. Figure 
3 shows the timing diagram of the control algorithm during the real-
time UIR process. In the designed system, the MCU and the FPGA 
device collaborates to produce a decision at every window 

increment. While the MCU is sampling data for window 1i , the 

user intent recognition for window i , including the tasks of SPI 

data transfer, feature extraction, gait phase detection, feature vector 
formation and normalization, and pattern recognition must be done 
within the window increment. In other words, the execution time of 
the UIR algorithm determines the minimum window increment. 
Larger window increments will introduce longer delay to the NMI 
decision, which may not be safe to control the prosthesis in real-
time. Therefore fast processing speed is very critical to the 
embedded system design. 

3.2 Parallel Implemetations on FPGA 

The implementation of the CPS was based on the Altera DE3 
education board with a Stratix III 3S150 FPGA device, coupled 
with the Freescale MPC5566 132 MHz 32 bits MCU evaluation 
board (EVB) with 40-channel 12-bit on-chip ADCs. The MPC5566 
module and the DE3 module are connected with each other via 

serial peripheral interface (SPI). In this design, DE3 was configured 
as the SPI master and MPC5566 was the slave. A parallel UIR 
algorithm tailored to FPGA was designed and implemented on 
DE3. Fixed-point operations were adopted in this implementation 
because of their less resource cost and lower latency than floating-
point operations. In addition, because the input signals were 
sampled by ADCs with 12-bit resolution, all the arithmetic 
operation types in the PR algorithm could be handled by 32-bit 
fixed-point data formats with careful management. 

The UIR algorithm was implemented on the FPGA with the 
help of a high-level synthesis tool--CoDeveloper from Impulse 
Accelerated Technologies. The PR algorithm was first developed 
using C programming language, and then CoDeveloper was used to 
generate VHDL (VHSIC hardware description language) modules 
from the C program. The VHDL modules were integrated into the 
FPGA system as the user defined modules as shown in Figure 1, 
and worked with other hardware components as a complete NMI. 
To utilize the parallelism of FPGAs, CoDeveloper provides a 
multiple process, parallel programming model. In our design, the 
algorithm was partitioned into a set of processes. These processes 
can run on the FPGA in parallel if there are no data dependencies. 
The communications between processes can be done using 
communication objects, such as streams, signals, and shared 
memories. Streams are implemented in hardware as dual-port FIFO 
RAM buffers. A stream connects two concurrent processes (a 
producer and a consumer), where the producer stores data into and 
the consumer accesses data from the stream buffer. A single process 
can be associated with multiple input and output streams. Signals 
are useful objects to communicate status information among 
processes. Shared memories are used to store and access large 
blocks of data from specific external memory locations using block 
read and block write functions.  

1) Feature Extraction: Before offline training or online pattern 
recognition is performed, features need to be extracted from raw 
input signals. In every analysis window, four time-domain (TD) 
features (mean absolute value, number of zero crossings, waveform 
length, and number of slope sign changes) are extracted from each 
EMG channel. For the mechanical forces/moments recorded from 
the 6-DOF load cell, the mean value is calculated as the feature 
from each individual DOF. The procedure of feature extraction is 
independent for individual input channel and identical for 
homogeneous sensors. This property can be utilized to greatly 
reduce the computation time for feature extraction because all the 
channels can be processed in parallel. Figure 4 shows the 
partitioned processes and the data flows of the FPGA 
implementation of feature extraction. Each white box in the figure 
represents a small process. The black arrows located between 

processes are one-way data streams. In this design, 6N parallel 

threads are generated, where N  denotes the number of EMG 

channels, and the other six threads are assigned for extracting 
Figure 2. Architecture of UIR strategy based on neuromuscular-

mechanical fusion-based phase-dependent pattern recognition. 

Figure 3. Timing diagram of the control algorithm during online UIR 

process. 
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features from mechanical forces/moments. For each EMG channel, 
the thread contains four processes: loading raw input data from 
memory, calculating mean, subtracting mean from the raw data, and 
extracting four TD features from the processed data. For 
mechanical forces/moments, each thread fetches raw data from 
memory and calculates mean as the mechanical feature. After all the 
features are extracted, the feature streams are sent to the process of 
feature vector formation and normalization and then fused into a 

1)64( N  feature vector. To implement the phase-dependent PR 

strategy, a thread of gait phase detection loads the vertical GRF 
measured from the load cell in each analysis window, and then 
determines current gait phase. This thread is also independent from 
the threads for feature extraction so that it can run simultaneously 
with other threads. The detected gait phase is streamed to the phase 
labeling process, and the feature vector generated in current window 
is labeled with a specific gait phase. During online pattern 
recognition, the feature vector with a labeled phase is the input data 
for pattern classification. In the training procedure, signals are 
recorded for a period of time under each movement task. Same 
procedure of feature extraction is performed for every training 

window. A ])4,1[()64(  pMN p
 feature matrix is generated as 

the training data for each gait phase, where 
pM  is the number of 

training windows in the 
thp  phase. 

2) Pattern Recognition: In this study, linear discriminant 
analysis (LDA) is adopted for user intent classification because of 
its computational efficiency for real-time prosthesis control and the 
comparable accuracy to more complex classifiers [7]. Four gait 
phases are defined for recognizing user’s locomotion mode, giving 
rise to four LDA-based classifiers. Each classifier is trained for a 
specific phase. The details of the LDA algorithm can be found in 
the supplemental material. 

Most of the computations involved in the training algorithm are 
matrix operations. Because a large amount of data need to be 
processed in the training procedure, the dimensions of the matrices 
can be very large. Only using on-chip memory is not enough to 
handle all the computations. External memory with large capacity is 
required to store the processing data. In our implementation, several 
external memory buffers are defined to store either large matrices 
during the training computations or data that might be reused in the 
online PR phase or the re-training phase. A process is designed to 
perform a simple task with a small block of data, such as a matrix 
row/column, and store partial results in the external memory. In this 
way, the operations of subsequent matrix rows/columns can be 
efficiently pipelined.  

During online pattern recognition, based on the gait phase of 
current analysis window, the parameters of the corresponding 
classifier are loaded from memory. The observed feature vector 
derived from each analysis window is provided to the classifier for 
intent recognition. 

4. PROTOTYPING & EXPERIMENTAL 

RESULTS 

This study was conducted with Institutional Review Board 

(IRB) approval at our university  and informed consent of subjects. 

To evaluate the performance of the designed NMI, two 

experiments with different purposes were conducted. First, to 

evaluate the classification accuracy and the computation speed of 

the FPGA-based PR algorithm, the performance of the FPGA 

implementation was compared with our previous software 

implementation by processing the same dataset offline. Secondly, 

to evaluate the performance of the entire CPS, a real-time test was 

carried out on a male able-bodied subject for identifying three 

movement tasks (level-ground walking, stair ascent, and standing). 

4.1 Performance of FPGA vs. CPU 

In order to verify the correctness of the FPGA-based PR 
algorithm and compare the performance of the FPGA design with 
our previous Matlab implementation, we processed the same dataset 
on both platforms. The testing dataset was previously collected 
from a male patient with transfemoral amputation (TF).  Seven 
EMG channels recording signals from the gluteal and thigh muscles 
and six channels of mechanical forces/moments measured by a 6-
DOF load cell were collected in this dataset for identifying three 
locomotion modes including level-ground walking, stairs ascent, 
and stairs descent. The dataset was segmented by overlapped 
analysis windows. The window length and the window increment 
were set to 160 data points and 20 data points, respectively. The 
dataset contained 936 analysis windows totally, where 596 of them 
were used as the training data and the rest 340 windows were 
testing data. The Matlab implementation was based on a PC with 
Intel Core i3 3.2 GHz CPU and 6 GB DDR3 SDRAM at 1333 
MHz. For the FPGA implementation, a 1GB DDR2-SDRAM SO-
DIMM module was plugged into the DDR2 SO-DIMM socket on 
the DE3 board as the system external memory. The Altera high 
performance DDR2 SDRAM IP generated one 200 MHz clock as 
SDRAM's data clock and one half-rate system clock 100 MHz for 
all other hardware components in the system. The dataset was 
preloaded into the SDRAM, and the output decisions were printed 
to the Nios II console [12] for performance evaluation. 

It was observed that the classification results of the FPGA 
system matched very well with the Matlab implementation. Both 
platforms provided a training accuracy of 98.99% and a testing 
accuracy of 98.00%.  The missed classification points of the two 
implementations appeared in the same locations. These results 
clearly demonstrated that the FPGA-based PR algorithm did not 
lose any computation accuracy as compared to the software 
implementation.  

Table 1 compares the execution time of the LDA-based PR 
algorithm between the software implementation and the FPGA 
design. Two configurations with different number of input channels 
were considered, one with 7 EMG channels and 6 mechanical 
channels, the other with 12 EMGs and 6 mechanical channels. For 
the training algorithm that processed 600 analysis windows, the 
FPGA provided a speedup of around 7X over the software 
implementation. In the testing phase, the FPGA system took less 
than 0.3 ms to classify one analysis window. Compared with the 
Matlab implementation, the FPGA-based PR testing algorithm 
demonstrated a speedup of 30 times for the configuration of 7 

Figure 4. Partitioned processes and data flows of the FPGA 

implementation of feature extraction. 
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EMGs and 6 mechanical signals. If more input channels were used 
(i.e. 12 EMG channels and 6 mechanical channels), a more 
significant speedup of 38X was observed, which further 
demonstrated the advantages of FPGA parallelism. From Table 1 
we can see that the FPGA implementation of the testing algorithm 
shows better performance than the training algorithm. This is 
because the testing algorithm only used fast on-chip memory while 
the computation complexity of the training algorithm required the 
FPGA to interact with the external memory. In our experiments it 
was observed that loading training data from external memory to 
the FPGA took more than half of the total execution time of the 
training algorithm. The summary of FPGA resource utilization is 
listed in Table 2. 

4.2 System performance in real-time 

The designed NMI prototype was tested on one male able-

bodied subject (Figure 5) in real-time. A plastic adaptor was made 

so that the subject could wear a hydraulic passive knee on the left 

side. Seven surface EMG electrodes (MA-420-002, Motion Lab 

System Inc., Baton Rouge, LA) were used to record signals from 

the gluteal and thigh (or residual thigh) muscles on the subject's 

left leg. An MA-300 system (Motion Lab System Inc., Baton 

Rouge, LA) collected seven channels of EMG signals. A ground 

electrode was placed near the anterior iliac spine of the subject. 

The mechanical ground reaction forces and moments were 

measured by a 6-DOF load cell mounted on the prosthetic pylon. 

The analog EMG signals and mechanical signals were digitally 

sampled at the rate of 1.1 KHz by the MPC5566 EVB. The intent 

decisions made by the FPGA device were sent out to 4-bit parallel 

IO pins on the DE3 board, and displayed by a software GUI. The 

window length and the window increment were still set to 160 data 

points and 20 data points, respectively. 

Three movement tasks (level-ground walking (W), stair ascent 

(SA) and standing (ST)) and four mode transitions (ST→W, 

W→ST, ST→SA and SA→ST) were investigated in this 

experiment. For the subject’s safety, he was allowed to use hand 

railings and a walking stick. A training session was conducted first 

to collect the training data for the pattern classification. The 

subject was instructed to do each movement task for about 10 

seconds in one trial. Three trials were collected as the training data. 

In the real time testing sessions, 10 real-time testing trials were 

conducted. To evaluate the system performance of real-time intent 

recognition, we adopted the evaluation criteria as described in our 

previous study [13]. The testing data were separated into static 

states and transitional periods. The static state was defined as the 

state of the subject continuously walking on the same type of 

terrain (level ground and stair) or performing the same task 

(standing). A transitional period was the period when subjects 

switched locomotion modes. The purpose of the UIR system is to 

predict mode transitions before a critical gait event for safe and 

smooth switch of prosthesis control mode. In this study the critical 

timing was defined for each type of transition. For the transitions 

from standing to locomotion modes (level-ground walking and 

stair ascent), the critical timing was defined at the beginning of the 

swing phase (i.e. toe-off). For the transitions from locomotion 

modes to standing, the critical timing was the beginning of the 

double stance phase (i.e. heel contact). The real time performance 

of our embedded system was evaluated by the following 

parameters. 

Classification Accuracy in the Static States: The classification 

accuracy in the static state is the percentage of correctly classified 

observations over the total number of observations in the static 

states. 

The Number of Missed Mode Transitions: For the transitions 

from standing to locomotion modes, the transition period starts one 

second before the critical timing, and terminates at the end of the 

single stance phase after the critical timing; for the transitions from 

locomotion modes to standing, the transition period includes the 

full stride cycle prior to the critical timing and the period of one 

second after the critical timing. A transition is missed if no correct 

transition decision is made within the defined transition period. 

Prediction Time of Mode Transitions: The prediction time of a 

transition in this experiment is defined as the elapsed time from the 

moment when the decisions of the classifier changes movement 

mode to the critical timing for the investigated task transitions. 

The overall classification accuracy in the static states across 10 

testing trials for classifying level-ground walking, stair ascent and 

standing was 99.31%. For all the 10 trials, no missed mode 

transitions were observed within the defined transition period. 

Table 3 lists the average and the standard deviation of the 

prediction time for four types of transitions. The results show that 

there was around 104 ms decision delay for the transitions from 

stair ascent to standing (SA→ST). This is because the subject 

Table 2.  Stratix III 3S150 Resource Utilization 

Resources Available Training 

12 EMG 

6 Mech. 

Training 

7 EMG 

6 Mech. 

Online 

PR 

12 EMG 

6 Mech. 

Online 

PR 

7 EMG 

6 Mech. 

Combinational 

ALUTs 

113,600 46% 33% 32% 25% 

Memory 
ALUTs 

56,800 3% 2% 3% 2% 

Registers 113,600 43% 30% 27% 24% 

Block memory 
bits 

5,630,976 16% 12% 16% 12% 

DSP blocks 384 72% 44% 27% 24% 

 

Figure 5. The NMI prototype based on MPC5566 EVB and DE3 

education board (left figure) and the experimental setup of the real-

time test on a male able-bodied subject (right figure).   

Table 1.  Comparison of the execution time of the PR algorithm 

 Configuration FPGA Matlab Speedup 

Training Algorithm 

( 600 analysis windows) 

7 EMGs 

6 Mech. 
0.46 s 3.2 s 6.96 x 

12 EMGs 
6 Mech. 

0.64 s 4.7 s 7.34 x 

Testing algorithm  
( classify one analysis 

window) 

7 EMGs 

6 Mech. 
0.23ms 6.8 ms 29.56 x 

12 EMGs 
6 Mech. 

0.25 ms 9.5 ms 38.00 x 

 

Table 3.  Prediction Time of Mode Transitions Before Critical 

Timing 

Transition ST→W W→ST ST→SA SA→ST 

Prediction 

Time (ms) 

412.8±76.7 124.39±114.2 549.83±139.2  -104.67±54.1 
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could not perform foot-over-foot alternating stair climbing with a 

passive knee joint. In our experiments, the subject climbed stairs 

by lifting the sound leg on one step and then pulled up the 

prosthetic leg on the same step, which produced the same pattern 

as the mode transition from stair ascent to standing. Therefore the 

transition SA→ST was only able to be recognized after the subject 

was standing still. This problem will be eliminated by replacing the 

passive device with a powered knee in the near future. Wearing the 

powered knee, the prosthesis user is able to climb stairs foot-over-

foot, which provides a very different pattern from the transition 

SA→ST. For the other three types of transitions (ST→W, W→ST, 

and ST→SA), the user intent for mode transitions can be 

accurately predicted 104-549 ms before the critical timing for 

switching the control of prosthesis. Figure 6 shows the real-time 

system performance for one representative testing trial. The white 

area in Figure 6 denotes the periods of static states (level-ground 

walking, stair ascent, and standing), the gray area represents the 

transitional period, and the black vertical dash line indicates the 

critical timing for each transition. We can see in this trial all the 

transitions were correctly recognized within the transitional period. 

No missed classifications occurred in the static states in this trial. 

The video of our real-time experiments can be found at 

http://www.youtube.com/watch?v=KNhihjXProU.  

5. CONCLUSIONS 

This paper presented the design and implementation of the first 

complete cyber physical system of neural machine interface for 

artificial legs.  The new CPS implemented both training and testing 

modules on one single chip, and integrated all the necessary 

interfaces and control algorithms for identifying the user's intended 

locomotion modes in real-time. The designed NMI incorporated an 

MCU for sensing and buffering input EMG signals and mechanical 

signals, and an FPGA device as the computing engine for fast 

decoding and pattern recognition. A special parallel processing 

algorithm for UIR was designed and implemented that realized the 

neuromuscular-mechanical fusion based PR algorithm coupled 

with the real-time controlling algorithm on the FPGA. The FPGA 

implementation of the PR algorithm achieved a speedup of 7X 

over the Matlab implementation for the training phase, and a 

speedup of more than 30X for the testing phase with no sacrifice of 

computation accuracy. The designed NMI prototype was tested on 

an able-bodied subject for accurately classifying multiple 

movement tasks (level-ground walking, stair ascent, and standing) 

in real-time. The results demonstrated the feasibility of a self-

contained and high performance real-time NMI for artificial legs. 

Our future work includes real-time testing of the designed NMI 

system on amputee subjects, using the NMI system to control 

powered prosthetic legs, studying management of power 

consumption, and increasing the system reliability. 
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Figure 6. Real-time system performance for one representative 

testing trial. The white area denotes the periods of static states (level-
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the transitional period; the black vertical dash line indicates the 

critical timing for each transition. 
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S1. PATTERN RECOGNITION USING 

LINEAR DISCRIMINANT ANALYSIS 

The principle of the LDA-based PR strategy is to find a linear 

combination of features which separates multiple locomotion 

classes ]),1[( GgCg  . G denotes the total number of classes. 

Suppose 
g is the mean vector of class 

gC and every class shares a 

common covariance matrix  , the linear discriminant function is 

defined as  
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During the training procedure,  and 
g are estimated based 

on the feature matrix calculated from the training data. The 

estimations of  and 
g  are expressed as  
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where 
gK is the number of analysis windows in class 

gC ; 
kCg

f ,
 is 

the 
thk  observed feature vector in class 

gC ; 

],...,,...,,[ ,,2,1, ggggg KCkCCCg ffffF  is the feature matrix of class 

gC ; ]~,...,~,~[ ggggMi   is the mean matrix that has the same 

number of columns as in 
gF . The results of the LDA training 

procedure can be represented by a weight matrix as 

],...,,...,,[ 21 Gg wwwwW  and a weight vector as 

],...,,...,,[ 21 Gg ccccc  . Here  
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Therefore (1) can be estimated as  
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The major task of the training procedure is to calculate the 

mean vector 
g

~ for each class, the common covariance matrix 
~

, 

and its inverse matrix 1~  . In practice,  matrix inversion is a 

compute-intensive and time consuming task, which should be 

avoided if possible. From (2) and (3), it can be found that  1~   

does not appear alone. If 
g

~~ 1 can be calculated in an efficient 

way, W and c can be achieved easily. In our implementation, a 

more efficient algorithm was adopted to solve this problem. First, a 

Cholesky decomposition is performed as RRT 
~

, where R is 

upper triangular. Then 
g

~~ 1 can be quickly computed with a 

forward substitution algorithm for a lower triangular matrix 
TR , 

followed by a back substitution algorithm for an upper triangular 

matrix R . The condition of a successful Cholesky decomposition is 

that 
~

must be symmetric and has real positive diagonal elements, 

which can be perfectly satisfied by a covariance matrix. In this way, 

(2) and (3) can be reformulated as )~\(\ g

T

g RRw   and 

g

T

gg wc ~
2

1
 . 

During the testing phase, the observed feature vector f derived 

from each analysis window is applied to calculate 
gCd

~
in (4) for 

each movement class and is classified into a class 
gC

~
that satisfies 
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