
Implementing an FPGA System for Real-Time Intent
Recognition for Prosthetic Legs

Xiaorong Zhang, He Huang, and Qing Yang
University of Rhode Island

{zxiaorong, huang, qyang}@ele.uri.edu

ABSTRACT
This paper presents the design and implementation of a cyber

physical system (CPS) for neural-machine interface (NMI) that

continuously senses signals from a human neuromuscular control

system and recognizes the user's intended locomotion modes in

real-time. The CPS contains two major parts: a microcontroller unit

(MCU) for sensing and buffering input signals and an FPGA device

as the computing engine for fast decoding and recognition of neural

signals. The real-time experiments on a human subject

demonstrated its real-time, self-contained, and high accuracy in

identifying three major lower limb movement tasks (level-ground

walking, stair ascent, and standing), paving the way for truly neural-

controlled prosthetic legs.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-

time and embedded systems.

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Neural-machine interface, embedded system, prosthetic leg, field-

programmable gate array (FPGA)

1. INTRODUCTION

Neural-machine interface (NMI) is a typical example of

biomedical cyber physical system (CPS) which utilizes neural

activities to control machines. The neural signals collected from

nerves, central neurons, and muscles contain a lot of important

information that can represent human states such as emotion,

intention, and motion. In such a CPS, a computer senses bioelectric

signals from a physical system (i.e. human neural control system),

interprets these signals, and then controls an external device, such

as a power-assisted wheelchair [1], a telepresence robot [2], or a

prosthesis [3-5], which is also a physical system.
The neural signals captured from muscles are called

electromyographic (EMG) signals. The EMG signals can be picked
up with electrodes on the body surface and are effective bioelectric
signals for expressing movement intent. In recent years, EMG-
based NMI has been widely studied for control of artificial limbs in
order to improve the quality of life of people with limb loss.

Researchers have aimed at utilizing neural information to develop
multifunctional, computerized prosthetic limbs that perform like
natural-controlled limbs. The NMI needs to interface with multiple
sensors for collecting neural signals, decipher user intent, and drive
the prosthetic joints simultaneously. EMG pattern recognition (PR)
is a sophisticated technique for characterizing EMG signals and
classifying user’s intended movements. It usually contains a
training phase for constructing the parameters of a classifier from a
large amount of EMG signals, and a testing phase for recognizing
user intent using the trained classifier. While the PR algorithm for
artificial arm control has been successfully developed and neural-
controlled prosthetic arms have already been clinically tested [4, 6-
7], there has been no EMG-based NMI commercially available for
control of powered prosthetic legs. Challenges in the management
of both physical and computational resources have limited the
success of a CPS for neural control of artificial legs.

One of the challenges on physical resources is due to the muscle
loss of leg amputees. Patients with leg amputations may not have
enough EMG recording sites available for neuromuscular
information extraction [8]. The non-stationary of EMG signals
during dynamic leg movement further increases the difficulty of
user intent recognition (UIR). To address this challenge, Huang et
al. proposed a phase-dependent PR strategy for classifying user’s
locomotion modes [8]. This PR algorithm extracted neural
information from limited signal sources and showed accurate
classification (90% or higher accuracy) of seven locomotion modes
when 7-9 channels of EMG signals were collected from able-bodied
subjects and leg amputees. The performance of the phase-dependent
PR strategy was further improved by incorporating EMG signals
with mechanical signals resulting from forces/moments acting on
prosthetic legs [9]. The experimental results showed that the
classification accuracies of the neuromuscular-mechanical fusion
based PR algorithm were 2%-27% higher than the accuracies
derived from the strategies using EMG signals alone, or mechanical
signals alone [9].

The challenges on computational resources include tight
integration of software and hardware on an embedded computer
system that is specifically tailored to this environment. It requires
high speed classifier training, fast response, real-time decision
making, high reliability, and low power consumption. Embedded
systems are usually resource constrained and typically have
processors with slower system clock, limited memory, small or no
hard drives. To make the idea of neural-controlled artificial leg a
reality, we need efficiently manage the constrained computational
resources to meet all the requirements for smooth control and safe
use of prosthetic legs. Our previous study proposed an NMI
implemented on a commodity 32-bit microcontroller unit (MCU)
for recognizing two non-locomotion tasks of sitting and standing in
real-time [10]. It was reported that there was a noticeable delay of
400 ms for producing classifying decisions, implying inadequate
computational power of the MCU for real-time control of artificial
legs. Furthermore, this NMI implementation realized only the
testing phase of the PR algorithm on the MCU. The training
algorithm which involved intensive computations was implemented
on graphic processing units (GPUs) and showed good speedups

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June3–7, 2012, San Francisco, California, USA.

Copyright 2012 ACM 978-1-4503-1199-1/12/06…$10.00.

169

over CPU-based implementation [10]. However, currently most of
the GPU cards only have PCI Express interfaces and are not
portable. Relative high power consumption further makes it more
difficult to use GPU as an embedded wearable device.

To tackle these technical challenges, we present a new design of
an embedded system that is specifically tailored to the new NMI. A
unique integration of hardware and software of the embedded
system is proposed that is suitable to this real-time CPS with
adequate computational capability, high energy efficiency,
flexibility, reliability, and robustness. The NMI on an embedded
platform continuously monitors EMG activities from leg muscles as
well as mechanical forces/moments acting on prosthetic legs.
Information fusion technique is then used to decode and decipher
the collected signals to recognize users' intended locomotion modes
in real-time. The embedded system contains two major parts: a data
collection module for sensing and buffering input signals and an
intelligent processing unit for executing the UIR algorithm. The
data collection module was implemented on a microcontroller unit
(MCU) with multiple on-board analog-to-digital converters (ADCs)
for signal sampling. A reconfigurable FPGA device was designed
as the main computing engine for this system. There are several
reasons for choosing FPGAs for the designed NMI. First, the
parallelism of FPGAs allows for high computational throughput
even at low clock rates. Secondly, FPGAs are not constrained by a
specific instruction set, thus are more flexible and more power
efficient than processors. Furthermore, FPGAs can easily generate
customized IO interfaces with existing IP cores, and appear to be
good choices for real-time embedded solutions. In our design, a
high-level synthesis tool was used to help reducing the
implementation difficulty of coding with hardware design language
(HDL). A special parallel processing algorithm for UIR was
designed, realizing the neuromuscular-mechanical fusion based PR
algorithm coupled with the real-time controlling algorithm in
hardware. A serial peripheral interface (SPI) was built between the
MCU and the FPGA to transfer digitized input data from the MCU
to the FPGA device. The decision stream of user's intended
movements can be output to either control a powered prosthetic leg
or drive a virtual reality (VR) system with the purpose of evaluating
the NMI. Although our previous research has made the attempt to
use FPGA in EMG pattern recognition and has shown high
processing speed in the offline analyses [11], the embedded system
presented here is the first complete CPS for the NMI that
implements both training and testing modules on one single chip.
The New CPS integrates all the necessary interfaces and control
algorithms for interacting with the physical system in real-time.

The newly designed NMI was completely built and tested as a
working prototype. The prototype was then used to carry out real-
time testing experiments on an able-bodied subject for classifying
three movement tasks (level-ground walking, stair ascent, and
standing) in real-time. The system performance was evaluated to
demonstrate the feasibility of a self-contained and high performance
real-time NMI for artificial legs. Videos of our experiments on the
human subject can be found at
http://www.youtube.com/watch?v=KNhihjXProU.

This paper is organized as follows. Next section presents the
overall system design. Section 3 describes the detailed
implementation of the UIR algorithm. The experimental results are
demonstrated in Section 4. We conclude our paper in Section 5.

2. SYSTEM DESIGN

The architecture of designed CPS is shown in Figure 1. The
embedded NMI samples input signals from two physical systems--a
human neuromuscular system and a mechanical prosthetic leg. The
sampled signals are then processed to decipher user’s intent to
control the prosthesis. The NMI consists of two modules: a data

collection module built on an MCU with multiple on-chip ADCs for
sensing and buffering input signals, and an FPGA device as the
computing engine for fast data decoding and pattern recognition. A
serial peripheral interface (SPI) is located between the two devices
for transferring digitized input data from the MCU to the FPGA
device.

1) Input signals: Multi-channel EMG signals are collected from
multiple surface electrodes mounted on patient's residual muscles.
Mechanical forces and moments are recorded from a 6 degrees-of-
freedom (DOF) load cell mounted on the prosthetic pylon. The
EMG signals and the mechanical signals are preprocessed by filters
and amplifiers and then simultaneously streamed into the NMI.

2) MCU module: The MCU device does not do any compute-
intensive task. It provides multi-channel on-chip ADCs to sample
the input signals and convert the analog signals to digital data. The
digitized data is then stored in the user-defined result queues
allocated in the RAM buffer. In the system RAM, two equal sized
result queues are defined. With direct memory access (DMA)
support, the MCU core can be insulated from the data acquisition
process. Thus these two result queues forms a circular buffer that
can continuously receive new data while transmitting old data to the
FPGA module for further processing.

3) FPGA module: The FPGA device receives digitized data
from the MCU module continuously. In order to fully utilize the
computing capacity of the FPGA system and produce dense
decisions, the input signals are segmented by overlapped analysis
windows with a fixed window length and window increment [4].
The designed FPGA module contains six components: an SPI
module that serially receives input signals from the MCU module, a
user defined module implementing the UIR algorithm, a high-speed
on-chip memory for fast online pattern recognition, an SDRAM
controller that interfaces with a large-capacity external SDRAM,
parallel IOs for outputting UIR decisions, and a soft processor for
managing hardware components and directing data flows. The
FPGA module works in two modes: offline training and online
pattern recognition. Offline training needs to be performed before
using the artificial leg and also whenever a complete re-training is
required. During the training procedure, users are instructed to do
different movement tasks, and a large amount of data is collected by
the NMI to train the classifier. The external SDRAM is only used in
the offline training phase to store the training data because FPGAs
usually have limited on-chip memory. For online pattern
recognition, the input streams are stored in the on-chip memory for
fast processing and provided to the classifier for decisions to
continuously identify the user’s intended movements.

Figure 1. System architecture of the embedded NMI for artificial legs.

170

3. IMPLEMENTATION OF THE UIR

ALGORITHM ON FPGA

3.1 Architecture of the UIR Strategy

The architecture of the UIR strategy based on neuromuscular-
mechanical information fusion and phase-dependent pattern
recognition (PR) is shown in Figure 2. It is a self-contained
architecture that integrates the functions of training and phase-
dependent pattern recognition in one embedded system. For every
analysis window, features of EMG signals and mechanical signals
are extracted from each input channel. A feature vector is formed
and normalized by fusing the features from all the input channels.
The feature vector is then fed to the classifier for pattern
recognition. The phase-dependent classifier consists of a gait phase
detector and multiple classifiers. Each classifier is associated with a
specific gait phase. During the process of pattern recognition, the
gait phase for current analysis window is first determined by the
phase detector, and then the corresponding classifier is adopted to
do the classification. In this study, four gait phases are defined:
initial double limb stance (phase 1), single limb stance (phase 2),
terminal double limb stance (phase 3), and swing (phase 4) [9]. The
real-time gait phase detection is based on the measurements of the
vertical ground reaction force (GRF) sampled from the 6-DOF load
cell.

In the real-time embedded system design, to ensure a smooth
control of artificial legs, precise timing control is necessary. Figure
3 shows the timing diagram of the control algorithm during the real-
time UIR process. In the designed system, the MCU and the FPGA
device collaborates to produce a decision at every window

increment. While the MCU is sampling data for window 1i , the

user intent recognition for window i , including the tasks of SPI

data transfer, feature extraction, gait phase detection, feature vector
formation and normalization, and pattern recognition must be done
within the window increment. In other words, the execution time of
the UIR algorithm determines the minimum window increment.
Larger window increments will introduce longer delay to the NMI
decision, which may not be safe to control the prosthesis in real-
time. Therefore fast processing speed is very critical to the
embedded system design.

3.2 Parallel Implemetations on FPGA

The implementation of the CPS was based on the Altera DE3
education board with a Stratix III 3S150 FPGA device, coupled
with the Freescale MPC5566 132 MHz 32 bits MCU evaluation
board (EVB) with 40-channel 12-bit on-chip ADCs. The MPC5566
module and the DE3 module are connected with each other via

serial peripheral interface (SPI). In this design, DE3 was configured
as the SPI master and MPC5566 was the slave. A parallel UIR
algorithm tailored to FPGA was designed and implemented on
DE3. Fixed-point operations were adopted in this implementation
because of their less resource cost and lower latency than floating-
point operations. In addition, because the input signals were
sampled by ADCs with 12-bit resolution, all the arithmetic
operation types in the PR algorithm could be handled by 32-bit
fixed-point data formats with careful management.

The UIR algorithm was implemented on the FPGA with the
help of a high-level synthesis tool--CoDeveloper from Impulse
Accelerated Technologies. The PR algorithm was first developed
using C programming language, and then CoDeveloper was used to
generate VHDL (VHSIC hardware description language) modules
from the C program. The VHDL modules were integrated into the
FPGA system as the user defined modules as shown in Figure 1,
and worked with other hardware components as a complete NMI.
To utilize the parallelism of FPGAs, CoDeveloper provides a
multiple process, parallel programming model. In our design, the
algorithm was partitioned into a set of processes. These processes
can run on the FPGA in parallel if there are no data dependencies.
The communications between processes can be done using
communication objects, such as streams, signals, and shared
memories. Streams are implemented in hardware as dual-port FIFO
RAM buffers. A stream connects two concurrent processes (a
producer and a consumer), where the producer stores data into and
the consumer accesses data from the stream buffer. A single process
can be associated with multiple input and output streams. Signals
are useful objects to communicate status information among
processes. Shared memories are used to store and access large
blocks of data from specific external memory locations using block
read and block write functions.

1) Feature Extraction: Before offline training or online pattern
recognition is performed, features need to be extracted from raw
input signals. In every analysis window, four time-domain (TD)
features (mean absolute value, number of zero crossings, waveform
length, and number of slope sign changes) are extracted from each
EMG channel. For the mechanical forces/moments recorded from
the 6-DOF load cell, the mean value is calculated as the feature
from each individual DOF. The procedure of feature extraction is
independent for individual input channel and identical for
homogeneous sensors. This property can be utilized to greatly
reduce the computation time for feature extraction because all the
channels can be processed in parallel. Figure 4 shows the
partitioned processes and the data flows of the FPGA
implementation of feature extraction. Each white box in the figure
represents a small process. The black arrows located between

processes are one-way data streams. In this design, 6N parallel

threads are generated, where N denotes the number of EMG

channels, and the other six threads are assigned for extracting
Figure 2. Architecture of UIR strategy based on neuromuscular-

mechanical fusion-based phase-dependent pattern recognition.

Figure 3. Timing diagram of the control algorithm during online UIR

process.

171

features from mechanical forces/moments. For each EMG channel,
the thread contains four processes: loading raw input data from
memory, calculating mean, subtracting mean from the raw data, and
extracting four TD features from the processed data. For
mechanical forces/moments, each thread fetches raw data from
memory and calculates mean as the mechanical feature. After all the
features are extracted, the feature streams are sent to the process of
feature vector formation and normalization and then fused into a

1)64(N feature vector. To implement the phase-dependent PR

strategy, a thread of gait phase detection loads the vertical GRF
measured from the load cell in each analysis window, and then
determines current gait phase. This thread is also independent from
the threads for feature extraction so that it can run simultaneously
with other threads. The detected gait phase is streamed to the phase
labeling process, and the feature vector generated in current window
is labeled with a specific gait phase. During online pattern
recognition, the feature vector with a labeled phase is the input data
for pattern classification. In the training procedure, signals are
recorded for a period of time under each movement task. Same
procedure of feature extraction is performed for every training

window. A])4,1[()64( pMN p
 feature matrix is generated as

the training data for each gait phase, where
pM is the number of

training windows in the
thp phase.

2) Pattern Recognition: In this study, linear discriminant
analysis (LDA) is adopted for user intent classification because of
its computational efficiency for real-time prosthesis control and the
comparable accuracy to more complex classifiers [7]. Four gait
phases are defined for recognizing user’s locomotion mode, giving
rise to four LDA-based classifiers. Each classifier is trained for a
specific phase. The details of the LDA algorithm can be found in
the supplemental material.

Most of the computations involved in the training algorithm are
matrix operations. Because a large amount of data need to be
processed in the training procedure, the dimensions of the matrices
can be very large. Only using on-chip memory is not enough to
handle all the computations. External memory with large capacity is
required to store the processing data. In our implementation, several
external memory buffers are defined to store either large matrices
during the training computations or data that might be reused in the
online PR phase or the re-training phase. A process is designed to
perform a simple task with a small block of data, such as a matrix
row/column, and store partial results in the external memory. In this
way, the operations of subsequent matrix rows/columns can be
efficiently pipelined.

During online pattern recognition, based on the gait phase of
current analysis window, the parameters of the corresponding
classifier are loaded from memory. The observed feature vector
derived from each analysis window is provided to the classifier for
intent recognition.

4. PROTOTYPING & EXPERIMENTAL

RESULTS

This study was conducted with Institutional Review Board

(IRB) approval at our university and informed consent of subjects.

To evaluate the performance of the designed NMI, two

experiments with different purposes were conducted. First, to

evaluate the classification accuracy and the computation speed of

the FPGA-based PR algorithm, the performance of the FPGA

implementation was compared with our previous software

implementation by processing the same dataset offline. Secondly,

to evaluate the performance of the entire CPS, a real-time test was

carried out on a male able-bodied subject for identifying three

movement tasks (level-ground walking, stair ascent, and standing).

4.1 Performance of FPGA vs. CPU

In order to verify the correctness of the FPGA-based PR
algorithm and compare the performance of the FPGA design with
our previous Matlab implementation, we processed the same dataset
on both platforms. The testing dataset was previously collected
from a male patient with transfemoral amputation (TF). Seven
EMG channels recording signals from the gluteal and thigh muscles
and six channels of mechanical forces/moments measured by a 6-
DOF load cell were collected in this dataset for identifying three
locomotion modes including level-ground walking, stairs ascent,
and stairs descent. The dataset was segmented by overlapped
analysis windows. The window length and the window increment
were set to 160 data points and 20 data points, respectively. The
dataset contained 936 analysis windows totally, where 596 of them
were used as the training data and the rest 340 windows were
testing data. The Matlab implementation was based on a PC with
Intel Core i3 3.2 GHz CPU and 6 GB DDR3 SDRAM at 1333
MHz. For the FPGA implementation, a 1GB DDR2-SDRAM SO-
DIMM module was plugged into the DDR2 SO-DIMM socket on
the DE3 board as the system external memory. The Altera high
performance DDR2 SDRAM IP generated one 200 MHz clock as
SDRAM's data clock and one half-rate system clock 100 MHz for
all other hardware components in the system. The dataset was
preloaded into the SDRAM, and the output decisions were printed
to the Nios II console [12] for performance evaluation.

It was observed that the classification results of the FPGA
system matched very well with the Matlab implementation. Both
platforms provided a training accuracy of 98.99% and a testing
accuracy of 98.00%. The missed classification points of the two
implementations appeared in the same locations. These results
clearly demonstrated that the FPGA-based PR algorithm did not
lose any computation accuracy as compared to the software
implementation.

Table 1 compares the execution time of the LDA-based PR
algorithm between the software implementation and the FPGA
design. Two configurations with different number of input channels
were considered, one with 7 EMG channels and 6 mechanical
channels, the other with 12 EMGs and 6 mechanical channels. For
the training algorithm that processed 600 analysis windows, the
FPGA provided a speedup of around 7X over the software
implementation. In the testing phase, the FPGA system took less
than 0.3 ms to classify one analysis window. Compared with the
Matlab implementation, the FPGA-based PR testing algorithm
demonstrated a speedup of 30 times for the configuration of 7

Figure 4. Partitioned processes and data flows of the FPGA

implementation of feature extraction.

172

EMGs and 6 mechanical signals. If more input channels were used
(i.e. 12 EMG channels and 6 mechanical channels), a more
significant speedup of 38X was observed, which further
demonstrated the advantages of FPGA parallelism. From Table 1
we can see that the FPGA implementation of the testing algorithm
shows better performance than the training algorithm. This is
because the testing algorithm only used fast on-chip memory while
the computation complexity of the training algorithm required the
FPGA to interact with the external memory. In our experiments it
was observed that loading training data from external memory to
the FPGA took more than half of the total execution time of the
training algorithm. The summary of FPGA resource utilization is
listed in Table 2.

4.2 System performance in real-time

The designed NMI prototype was tested on one male able-

bodied subject (Figure 5) in real-time. A plastic adaptor was made

so that the subject could wear a hydraulic passive knee on the left

side. Seven surface EMG electrodes (MA-420-002, Motion Lab

System Inc., Baton Rouge, LA) were used to record signals from

the gluteal and thigh (or residual thigh) muscles on the subject's

left leg. An MA-300 system (Motion Lab System Inc., Baton

Rouge, LA) collected seven channels of EMG signals. A ground

electrode was placed near the anterior iliac spine of the subject.

The mechanical ground reaction forces and moments were

measured by a 6-DOF load cell mounted on the prosthetic pylon.

The analog EMG signals and mechanical signals were digitally

sampled at the rate of 1.1 KHz by the MPC5566 EVB. The intent

decisions made by the FPGA device were sent out to 4-bit parallel

IO pins on the DE3 board, and displayed by a software GUI. The

window length and the window increment were still set to 160 data

points and 20 data points, respectively.

Three movement tasks (level-ground walking (W), stair ascent

(SA) and standing (ST)) and four mode transitions (ST→W,

W→ST, ST→SA and SA→ST) were investigated in this

experiment. For the subject’s safety, he was allowed to use hand

railings and a walking stick. A training session was conducted first

to collect the training data for the pattern classification. The

subject was instructed to do each movement task for about 10

seconds in one trial. Three trials were collected as the training data.

In the real time testing sessions, 10 real-time testing trials were

conducted. To evaluate the system performance of real-time intent

recognition, we adopted the evaluation criteria as described in our

previous study [13]. The testing data were separated into static

states and transitional periods. The static state was defined as the

state of the subject continuously walking on the same type of

terrain (level ground and stair) or performing the same task

(standing). A transitional period was the period when subjects

switched locomotion modes. The purpose of the UIR system is to

predict mode transitions before a critical gait event for safe and

smooth switch of prosthesis control mode. In this study the critical

timing was defined for each type of transition. For the transitions

from standing to locomotion modes (level-ground walking and

stair ascent), the critical timing was defined at the beginning of the

swing phase (i.e. toe-off). For the transitions from locomotion

modes to standing, the critical timing was the beginning of the

double stance phase (i.e. heel contact). The real time performance

of our embedded system was evaluated by the following

parameters.

Classification Accuracy in the Static States: The classification

accuracy in the static state is the percentage of correctly classified

observations over the total number of observations in the static

states.

The Number of Missed Mode Transitions: For the transitions

from standing to locomotion modes, the transition period starts one

second before the critical timing, and terminates at the end of the

single stance phase after the critical timing; for the transitions from

locomotion modes to standing, the transition period includes the

full stride cycle prior to the critical timing and the period of one

second after the critical timing. A transition is missed if no correct

transition decision is made within the defined transition period.

Prediction Time of Mode Transitions: The prediction time of a

transition in this experiment is defined as the elapsed time from the

moment when the decisions of the classifier changes movement

mode to the critical timing for the investigated task transitions.

The overall classification accuracy in the static states across 10

testing trials for classifying level-ground walking, stair ascent and

standing was 99.31%. For all the 10 trials, no missed mode

transitions were observed within the defined transition period.

Table 3 lists the average and the standard deviation of the

prediction time for four types of transitions. The results show that

there was around 104 ms decision delay for the transitions from

stair ascent to standing (SA→ST). This is because the subject

Table 2. Stratix III 3S150 Resource Utilization

Resources Available Training

12 EMG

6 Mech.

Training

7 EMG

6 Mech.

Online

PR

12 EMG

6 Mech.

Online

PR

7 EMG

6 Mech.

Combinational

ALUTs

113,600 46% 33% 32% 25%

Memory
ALUTs

56,800 3% 2% 3% 2%

Registers 113,600 43% 30% 27% 24%

Block memory
bits

5,630,976 16% 12% 16% 12%

DSP blocks 384 72% 44% 27% 24%

Figure 5. The NMI prototype based on MPC5566 EVB and DE3

education board (left figure) and the experimental setup of the real-

time test on a male able-bodied subject (right figure).

Table 1. Comparison of the execution time of the PR algorithm

 Configuration FPGA Matlab Speedup

Training Algorithm

(600 analysis windows)

7 EMGs

6 Mech.
0.46 s 3.2 s 6.96 x

12 EMGs
6 Mech.

0.64 s 4.7 s 7.34 x

Testing algorithm
(classify one analysis

window)

7 EMGs

6 Mech.
0.23ms 6.8 ms 29.56 x

12 EMGs
6 Mech.

0.25 ms 9.5 ms 38.00 x

Table 3. Prediction Time of Mode Transitions Before Critical

Timing

Transition ST→W W→ST ST→SA SA→ST

Prediction

Time (ms)

412.8±76.7 124.39±114.2 549.83±139.2 -104.67±54.1

173

could not perform foot-over-foot alternating stair climbing with a

passive knee joint. In our experiments, the subject climbed stairs

by lifting the sound leg on one step and then pulled up the

prosthetic leg on the same step, which produced the same pattern

as the mode transition from stair ascent to standing. Therefore the

transition SA→ST was only able to be recognized after the subject

was standing still. This problem will be eliminated by replacing the

passive device with a powered knee in the near future. Wearing the

powered knee, the prosthesis user is able to climb stairs foot-over-

foot, which provides a very different pattern from the transition

SA→ST. For the other three types of transitions (ST→W, W→ST,

and ST→SA), the user intent for mode transitions can be

accurately predicted 104-549 ms before the critical timing for

switching the control of prosthesis. Figure 6 shows the real-time

system performance for one representative testing trial. The white

area in Figure 6 denotes the periods of static states (level-ground

walking, stair ascent, and standing), the gray area represents the

transitional period, and the black vertical dash line indicates the

critical timing for each transition. We can see in this trial all the

transitions were correctly recognized within the transitional period.

No missed classifications occurred in the static states in this trial.

The video of our real-time experiments can be found at

http://www.youtube.com/watch?v=KNhihjXProU.

5. CONCLUSIONS

This paper presented the design and implementation of the first

complete cyber physical system of neural machine interface for

artificial legs. The new CPS implemented both training and testing

modules on one single chip, and integrated all the necessary

interfaces and control algorithms for identifying the user's intended

locomotion modes in real-time. The designed NMI incorporated an

MCU for sensing and buffering input EMG signals and mechanical

signals, and an FPGA device as the computing engine for fast

decoding and pattern recognition. A special parallel processing

algorithm for UIR was designed and implemented that realized the

neuromuscular-mechanical fusion based PR algorithm coupled

with the real-time controlling algorithm on the FPGA. The FPGA

implementation of the PR algorithm achieved a speedup of 7X

over the Matlab implementation for the training phase, and a

speedup of more than 30X for the testing phase with no sacrifice of

computation accuracy. The designed NMI prototype was tested on

an able-bodied subject for accurately classifying multiple

movement tasks (level-ground walking, stair ascent, and standing)

in real-time. The results demonstrated the feasibility of a self-

contained and high performance real-time NMI for artificial legs.

Our future work includes real-time testing of the designed NMI

system on amputee subjects, using the NMI system to control

powered prosthetic legs, studying management of power

consumption, and increasing the system reliability.

6. ACKNOWLEDGMENTS

This work is partly supported by National Science Foundation

NSF/CPS #0931820, NIH #RHD064968A, NSF #1149385,

NSF/CCF #1017177, and NSF/CCF #0811333. The authors thank

Fan Zhang, Quan Ding, Ding Wang, Lin Du, and Ming Liu at the

University of Rhode Island, for their suggestion and assistance in

this study.

7. REFERENCES

[1] Oonishi, Y., Oh, S., and Hori, Y., "A New Control Method for

Power-Assisted Wheelchair Based on the Surface Myoelectric

Signal," Industrial Electronics, IEEE Transactions on, vol. 57, pp.
3191-3196, 2010.

[2] Tonin, L., Carlson, T., Leeb, R., and Millán, J. R., "Brain-Controlled
Telepresence Robot by Motor-Disabled People," in 33rd Annual

International Conference of the IEEE EMBS, Boston, MA, 2011.

[3] Parker, P. and Scott, R., "Myoelectric control of prostheses," Critical
reviews in biomedical engineering, vol. 13, p. 283, 1986.

[4] Englehart, K. and Hudgins, B., "A robust, real-time control scheme
for multifunction myoelectric control," IEEE Trans Biomed Eng, vol.

50, pp. 848-54, Jul 2003.

[5] Lin, C. T., Ko, L. W., Chiou, J. C., Duann, J. R., Huang, R. S., Liang,
S. F., Chiu, T. W., and Jung, T. P., "Noninvasive neural prostheses

using mobile and wireless EEG," Proceedings of the IEEE, vol. 96,

pp. 1167-1183, 2008.

[6] Kuiken, T., "Targeted reinnervation for improved prosthetic

function," Phys Med Rehabil Clin N Am, vol. 17, pp. 1-13, Feb 2006.

[7] Huang, H., Zhou, P., Li, G., and Kuiken, T. A., "An analysis of EMG

electrode configuration for targeted muscle reinnervation based
neural machine interface," IEEE Trans Neural Syst Rehabil Eng, vol.

16, pp. 37-45, Feb 2008.

[8] Huang, H., Kuiken, T. A., and Lipschutz, R. D., "A strategy for
identifying locomotion modes using surface electromyography,"

IEEE Trans Biomed Eng, vol. 56, pp. 65-73, Jan 2009.

[9] Zhang, F., DiSanto, W., Ren, J., Dou, Z., Yang, Q., and Huang, H.,

"A Novel CPS System for Evaluating a Neural-Machine Interface for

Artificial Legs," 2011, pp. 67-76.

[10] Zhang, X., Liu, Y., Zhang, F., Ren, J., Sun, Y. L., Yang, Q., and

Huang, H., "On Design and Implementation of Neural-Machine

Interface for Artificial Legs," IEEE Transactions on Industrial
Informatics, 2011.

[11] Zhang, X., Huang, H., and Yang, Q., "Design and Implementation of

A Special Purpose Embedded System for Neural Machine Interface,"

in ICCD'2010, Amsterdam, the Netherlands, October 2010.

[12] Altera. Nios II Processor: The World's Most Versatile Embedded
Processor. Available: http://www.altera.com/products/ip/processors/

nios2/ni2-index.html

[13] Huang, H., Zhang, F., Hargrove, L., Dou, Z., Rogers, D., and

Englehart, K., "Continuous Locomotion Mode Identification for

Prosthetic Legs based on Neuromuscular-Mechanical Fusion,"
Biomedical Engineering, IEEE Transactions on, pp. 1-1, 2011.

Figure 6. Real-time system performance for one representative

testing trial. The white area denotes the periods of static states (level-

ground walking, stair ascent, and standing); the gray area represents

the transitional period; the black vertical dash line indicates the

critical timing for each transition.

174

Supplemental Material

S1. PATTERN RECOGNITION USING

LINEAR DISCRIMINANT ANALYSIS

The principle of the LDA-based PR strategy is to find a linear

combination of features which separates multiple locomotion

classes]),1[(GgCg  . G denotes the total number of classes.

Suppose
g is the mean vector of class

gC and every class shares a

common covariance matrix  , the linear discriminant function is

defined as

g

T

gg

T

C fd
g

 11

2

1   . (1)

During the training procedure,  and
g are estimated based

on the feature matrix calculated from the training data. The

estimations of  and
g are expressed as








G

g

T

gggg

g

MiFMiF
KG 1

))((
1

11~

and





g

g

K

k

kC

g

g f
K 1

,

1~

where
gK is the number of analysis windows in class

gC ;
kCg

f ,
 is

the
thk observed feature vector in class

gC ;

],...,,...,,[,,2,1, ggggg KCkCCCg ffffF  is the feature matrix of class

gC ;]~,...,~,~[ggggMi  is the mean matrix that has the same

number of columns as in
gF . The results of the LDA training

procedure can be represented by a weight matrix as

],...,,...,,[21 Gg wwwwW  and a weight vector as

],...,,...,,[21 Gg ccccc  . Here

ggw ~

~ 1 (2)

and

g

T

ggc  ~~~

2

1 1 . (3)

Therefore (1) can be estimated as

gg

T

C cwfd
g


~

. (4)

The major task of the training procedure is to calculate the

mean vector
g

~ for each class, the common covariance matrix 
~

,

and its inverse matrix 1~  . In practice, matrix inversion is a

compute-intensive and time consuming task, which should be

avoided if possible. From (2) and (3), it can be found that 1~ 

does not appear alone. If
g

~~ 1 can be calculated in an efficient

way, W and c can be achieved easily. In our implementation, a

more efficient algorithm was adopted to solve this problem. First, a

Cholesky decomposition is performed as RRT 
~

, where R is

upper triangular. Then
g

~~ 1 can be quickly computed with a

forward substitution algorithm for a lower triangular matrix
TR ,

followed by a back substitution algorithm for an upper triangular

matrix R . The condition of a successful Cholesky decomposition is

that 
~

must be symmetric and has real positive diagonal elements,

which can be perfectly satisfied by a covariance matrix. In this way,

(2) and (3) can be reformulated as)~\(\ g

T

g RRw  and

g

T

gg wc ~
2

1
 .

During the testing phase, the observed feature vector f derived

from each analysis window is applied to calculate
gCd

~
in (4) for

each movement class and is classified into a class
gC

~
that satisfies

},...,,{},
~

{maxarg
~

21 GgCgg CCCCdCC
g

 .

175

